Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
1 2 3 4 5 6 7 8 9 10
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.`
1 2 3 4 5 6 7 8 9 10
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0. Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
classSolution: defthreeSum(self, nums: List[int]) -> List[List[int]]: nums.sort() n = len(nums) result = []
for i inrange(n - 2): # Skip duplicate values for i if i > 0and nums[i] == nums[i - 1]: continue
left, right = i + 1, n - 1
while left < right: total = nums[i] + nums[left] + nums[right]
if total == 0: result.append([nums[i], nums[left], nums[right]])
# Skip duplicates for left and right left += 1 right -= 1 while left < right and nums[left] == nums[left - 1]: left += 1 while left < right and nums[right] == nums[right + 1]: right -= 1